① 关于数学历史发展和数学小故事的书
下面就是一个小故事,是一个数字之间的故事。
有一天,数字卡片在一起吃午饭的时候,最小的一位说起话来了。
0弟弟说:“我们大家伙儿,一起拍几张合影吧,你们觉得怎么样?”
0的兄弟姐妹们一口齐声的说:“好啊。”
8哥哥说:“0弟弟的主意可真不错,我就做一回好人吧,我老8供应照相机和胶卷,好吧?”
老4说话了:“8哥,好是好,就是太麻烦了一点,到不如用我的数码照相机,就这么定了吧。”
于是,它们变忙了起来,终于+号帮它们拍好了,就立刻把数码照相机送往冲印店,冲是冲好了,电脑姐姐身手想它们要钱,可它们到底谁付钱呢?它们一个个呆呆的望着对方,这是电脑姐姐说:“一共5元钱,你们一共十一个兄弟姐妹,平均一人付多少元钱?”
在它们十一个人中,就数老六最聪明,这回它还是第一个算出了结果,你知道它是怎么算出来的吗?
小朋友你们可知道数学天才高斯小时候的故事呢?
高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:
1+2+3+ ..... +97+98+99+100 = ?
老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:
1+2+3+4+ ..... +96+97+98+99+100
100+99+98+97+96+ ..... +4+3+2+1
=101+101+101+ ..... +101+101+101+101
共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050>
从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!
在日常生活中,数学无处不在,比如说:买菜、卖菜、算多少钱……
大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。
而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。过了一段时间,这件事被当时的罗马教皇知道了。当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇帝。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。
但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。
唐僧师徒摘桃子
一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不长时间,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子?
八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个?
唐僧很快说出他们每人摘桃子的个数。你知道他们每人摘多少个桃子吗?
动物中的数学“天才”
蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。
丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。(生活时报)
英国诗人捷尼逊写过一首诗,其中几行是这样写的:“每分钟都有一个人在死亡,每
分钟都有一个人在诞生……”有个数学家读后去信质疑,信上说:“尊敬的阁下,读罢大
作,令人一快,但有几行不合逻辑,实难苟同。根据您的算法,每分钟生死人数相抵,地
球上的人数是永恒不变的。但您也知道,事实上地球上的人口是不断地在增长。确切地说
,每分钟相对地有1.6749人在诞生,这与您在诗中提供的数字出入甚多。为了符合实际,
如果您不反对,我建议您使用7/6这个分数,即将诗句改为:“每分钟都有一个人死亡,
每分钟都有一又六分之一人在诞生......”
一位农夫请了工程师、物理学家和数学家来,想用最少的篱笆围出最大的面积。工程
师用篱笆围出一个圆,宣称这是最优设计。物理学家将篱笆拉开成一条长长的直线,假设
篱笆有无限长,认为围起半个地球总够大了。数学家好好嘲笑了他们一番。他用很少的篱
笆把自己围起来,然后说:“我现在是在外面。”
② 求一本有关数学史的书或文章啊,我要写读后感的,谢谢
晚上,我阅读了《〈名人成才故事一-阿基米德》,阿基米德是一位著名的数学家。诞生于叙拉古城,他发出惊天动地豪言壮语“给我一个支点,我可以撬动整个地球!”,令人佩服!!
书中讲有一次阿基米德到海边散步,忽然想起一道数学题,他顺手捡起了一个小贝壳,在沙滩上演算起来,一直演算到天黑了才回家。这种勤奋钻研的毅力,让我想到自已,平时在学习中碰撞到问题,要么不愿做,要么马上问妈妈,对比后很惭愧。
阿基米德随着岁月的推移和知识的增长,把所学知识运用于实际,解决了许多现实生活中的难题,成为古希腊闻名的大智者。欧洲地中海有一位国王,怀疑皇冠不是纯金的。请阿基米德来辨别,阿基米德苦思冥想了很多时间,也是一筹莫展。有一天洗澡,当身子全浸入水中时水盆里的水溢出来,这种现象让他很奇怪,他反复站起来又站下……突然他眼睛一亮,大声喊叫:“我知道了!我知道了!”回到王宫,让国王取出一块和皇冠一样重的金子,依次把金子和皇冠放在同样大小满水的罐子内,当水从罐子溢出时,用盆子接住,最后两个盆子中的水一比较,皇冠结果就出来了,这就是阿基米德发现的浮力定律。说明阿基米德是一个爱动脑筋,观察认真思考的学生。
看了这篇文章,我的收获是:要学习阿基米德对学习认真、勤奋、刻苦、有毅力,改正自己没有耐心和粗心的坏毛病。
③ 求关于数学发展史的书籍
《几何原本》《数学原理》《古今数学思想》德国数学家(C.)F.克莱因著的《19世纪数学发展史讲义》(1926~1927) 《1700~1900数学史概论》(C.H.)H.外尔写的《半个世纪的数学》 埃内斯特勒姆主编的《数学宝藏》(1884~1915,30卷)国际科学史协会数学史分会主编的《国际数学史杂志》《律历志》《四元玉鉴》 宋刊本《数术记遗》,《算经十书》(汉唐间算书) 《中算史论丛》(1~5集,1954~1955),李俨有《中国算学史》(1937)、《中国数学大纲》(1958);钱宝琮有《中国算学史》(上,1932)并主编了《中国数学史》(1964)。钱宝琮校点的《算经十书》(1963) 20世纪初日本人三上义夫的《数学在中国和日本的发展》以及50年代李约瑟在其巨著《中国科学技术史》
④ 数学史小故事
德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。
长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。
他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。
这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。
“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。
教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。
还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”
老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。
可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”
数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?
高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。
⑤ 给我一篇《数学史》150字的读后感
《数学史》读后感
[ 2011-11-21 19:53:00 | By: 若薇 ]
我阅读《数学史》,完全在一种休闲的、轻松的,也是舒坦的、愉快的状况之中。碰到繁复的数学公式、定理及其证明等,我一目十行、囫囵吞枣,一如我读大部头的小说,往往常规地跳过向来不太在意的大段心理描写一样。读《数学史》,我却十分留意它行云流水的叙述、缜密思维的演绎、多姿多彩的话语、宏大紧密的结构。有时,我按图索骥,对着目录,找准其中的某一篇章,仔细揣摩;有时,我随意打开其中的某页,顺势而读,总能做到乐在其中。我不求透彻的理解、不求系统的把握,《数学史》让我与牛顿、高斯这些巨人亲密接触,也让我循着代数、几何、算术、三角学发展的脉络,靠近(还不能说走进)数学。在我来说,只是追求阅读视野的扩大、知识背景的重构。
数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。
它的内容涉及到从上古时代到19世纪初的这段时期。为了跟踪过去2000年当中主要数学概念的发展,作者非常重视第一手资料的搜集与运用。在介绍重要数学家的工作时,大量从他们的原著中引用材料。在不列颠博物馆、英国皇家学会和剑桥三一学院的帮助下,引用了比较多的史料,使人们对原始的情况获得了深刻的印象。同时,作者还注意到数学知识的继承性和积累性,并不把重大的发现和发明完全归功于某一个人。例如对欧几里得和牛顿这样一些主要的流派,作者到说明他们的成就的渊源,从而勾画出数学科学本身发展的规律。斯科特博士依靠他对数学史的驾驭自如的能力写出了这本富有激励性的好书。
数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:“数学在一门科学中的应用程度,标志着这门科学的成熟程度。”在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。
数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立…这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。
⑥ 数学史通论 读后感 800字
我阅读《数学史通论》,完全在一种休闲的、轻松的,也是舒坦的、愉快的状况之中。碰到繁复的数学公式、定理及其证明等,我一目十行、囫囵吞枣,一如我读大部头的小说,往往常规地跳过向来不太在意的大段心理描写一样。读《数学史通论》,我却十分留意它行云流水的叙述、缜密思维的演绎、多姿多彩的话语、宏大紧密的结构。有时,我按图索骥,对着目录,找准其中的某一篇章,仔细揣摩;有时,我随意打开其中的某页,顺势而读,总能做到乐在其中。我不求透彻的理解、不求系统的把握,《数学史通论》让我与牛顿、高斯这些巨人亲密接触,也让我循着代数、几何、算术、三角学发展的脉络,靠近(还不能说走进)数学。在我来说,只是追求阅读视野的扩大、知识背景的重构。
数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。
它的内容涉及到从上古时代到19世纪初的这段时期。为了跟踪过去2000年当中主要数学概念的发展,作者非常重视第一手资料的搜集与运用。在介绍重要数学家的工作时,大量从他们的原著中引用材料。在不列颠博物馆、英国皇家学会和剑桥三一学院的帮助下,引用了比较多的史料,使人们对原始的情况获得了深刻的印象。同时,作者还注意到数学知识的继承性和积累性,并不把重大的发现和发明完全归功于某一个人。例如对欧几里得和牛顿这样一些主要的流派,作者到说明他们的成就的渊源,从而勾画出数学科学本身发展的规律。斯科特博士依靠他对数学史的驾驭自如的能力写出了这本富有激励性的好书。
数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:“数学在一门科学中的应用程度,标志着这门科学的成熟程度。”在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。
数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立…这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。
⑦ 亵渎数学史的txt全集下载地址
亵渎数学史 txt全集小说附件已上传到网络网盘,点击免费下载:
内容预览:
35、古玛雅数学
相对于“埃及、中国、印度、希腊等四大文明古国,学界倾向于更具概括力的“四大文明区”的说法,即东地中海文明区(埃及、美索不达米亚、亚述、腓尼基、希腊等)、南亚次大陆文明区(印度及其周边地区)、东亚文明区(中国及其周边地区)、中南美印第安文明区(玛雅、阿兹台克、印加)
公元前10世纪,中美洲兴起了玛雅文化,公元3-9世纪是玛雅文化的全盛时期,之后便渐渐衰弱。对这里数学的了解,主要来自一些残剩的玛雅时代的石刻和几种玛雅文古抄本:德累斯顿抄本、马德里抄本、巴黎抄本等。
早在公元最初的几个世纪里,玛雅人就创立了以地球围绕太阳旋转一周作为一年的《太阴历》,比古代希腊、罗马人的历法还要精确。与此同时,
玛雅人创造了独特的以20进位的位值制计数法。到了20则进位。玛雅人加减法的运算比较简单,与*数码的运算相同。
玛雅人的历法是世界上最正确的一个,他们的编年史据,从公元前4年8月11日开始,这一天代表什么意义?至……
⑧ 数学史通论读后感三百字
我阅读《数学史通论》,完全在一种休闲的、轻松的,也是舒坦的、愉快的状况之中。碰到繁复的数学公式、定理及其证明等,我一目十行、囫囵吞枣,一如我读大部头的小说,往往常规地跳过向来不太在意的大段心理描写一样。读《数学史通论》,我却十分留意它行云流水的叙述、缜密思维的演绎、多姿多彩的话语、宏大紧密的结构。有时,我按图索骥,对着目录,找准其中的某一篇章,仔细揣摩;有时,我随意打开其中的某页,顺势而读,总能做到乐在其中。我不求透彻的理解、不求系统的把握,《数学史通论》让我与牛顿、高斯这些巨人亲密接触,也让我循着代数、几何、算术、三角学发展的脉络,靠近(还不能说走进)数学。在我来说,只是追求阅读视野的扩大、知识背景的重构。
数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。
它的内容涉及到从上古时代到19世纪初的这段时期。为了跟踪过去2000年当中主要数学概念的发展,作者非常重视第一手资料的搜集与运用。在介绍重要数学家的工作时,大量从他们的原著中引用材料。在不列颠博物馆、英国皇家学会和剑桥三一学院的帮助下,引用了比较多的史料,使人们对原始的情况获得了深刻的印象。同时,作者还注意到数学知识的继承性和积累性,并不把重大的发现和发明完全归功于某一个人。例如对欧几里得和牛顿这样一些主要的流派,作者到说明他们的成就的渊源,从而勾画出数学科学本身发展的规律。斯科特博士依靠他对数学史的驾驭自如的能力写出了这本富有激励性的好书。