① 世界十大數學難題已經解決了幾個
shi難題」之一:P(多項式演算法)問題對NP(非多項式演算法)問題
難題」之二版: 霍奇(Hodge)猜想
難題」之三:權 龐加萊(Poincare)猜想
難題」之四: 黎曼(Riemann)假設
難題」之五: 楊-米爾斯(Yang-Mills)存在性和質量缺口
難題」之六: 納維葉-斯托克斯(Navier-Stokes)方程的存在性與光滑性
難題」之七: 貝赫(Birch)和斯維訥通-戴爾(Swinnerton-Dyer)猜想
難題」之八:幾何尺規作圖問題
難題」之九:哥德巴赫猜想
難題」之十:四色猜想
② 還有哪些世界著名數學難題未解決
1. 連續統假設 1874年,康托猜測在可列集基數和實數基數之間沒有別的基數,這就是著名的連續統假設。1938年,哥德爾證明了連續統假設和世界公認的策梅洛--弗倫克爾集合論公理系統的無矛盾性。1963年,美國數學家科亨證明連續假設和策梅洛--倫克爾集合論公理是彼此獨立的。因此,連續統假設不能在策梅洛--弗倫克爾公理體系內證明其正確性與否。希爾伯特第1問題在這個意義上已獲解決。
2. 算術公理的相容性 歐幾里得幾何的相容性可歸結為算術公理的相容性。希爾伯特曾提出用形式主義計劃的證明論方法加以證明。1931年,哥德爾發表的不完備性定理否定了這種看法。1936年德國數學家根茨在使用超限歸納法的條件下證明了算術公理的相容性。
1988年出版的《中國大網路全書》數學卷指出,數學相容性問題尚未解決。
3. 兩個等底等高四面體的體積相等問題
問題的意思是,存在兩個等邊等高的四面體,它們不可分解為有限個小四面體,使這兩組四面體彼此全等。M.W.德恩1900年即對此問題給出了肯定解答。
4. 兩點間以直線為距離最短線問題 此問題提得過於一般。滿足此性質的幾何學很多,因而需增加某些限制條件。1973年,蘇聯數學家波格列洛夫宣布,在對稱距離情況下,問題獲得解決。
《中國大網路全書》說,在希爾伯特之後,在構造與探討各種特殊度量幾何方面有許多進展,但問題並未解決。
5.一個連續變換群的李氏概念,定義這個群的函數不假定是可微的 這個問題簡稱連續群的解析性,即:是否每一個局部歐氏群都有一定是李群?中間經馮·諾伊曼(1933,對緊群情形)、邦德里雅金(1939,對交換群情形)、謝瓦莢(1941,對可解群情形)的努力,1952年由格利森、蒙哥馬利、齊賓共同解決,得到了完全肯定的結果。
6.物理學的公理化 希爾伯特建議用數學的公理化方法推演出全部物理,首先是概率和力學。1933年,蘇聯數學家柯爾莫哥洛夫實現了將概率論公理化。後來在量子力學、量子場論方面取得了很大成功。但是物理學是否能全盤公理化,很多人表示懷疑。
7.某些數的無理性與超越性 1934年,A.O.蓋爾方德和T.施奈德各自獨立地解決了問題的後半部分,即對於任意代數數α≠0 ,1,和任意代數無理數β證明了αβ 的超越性。
8.素數問題 包括黎曼猜想、哥德巴赫猜想及孿生素數問題等。一般情況下的黎曼猜想仍待解決。哥德巴赫猜想的最佳結果屬於陳景潤(1966),但離最解決尚有距離。目前孿生素數問題的最佳結果也屬於陳景潤。
9.在任意數域中證明最一般的互反律 該問題已由日本數學家高木貞治(1921)和德國數學家E.阿廷(1927)解決。
10. 丟番圖方程的可解性 能求出一個整系數方程的整數根,稱為丟番圖方程可解。希爾伯特問,能否用一種由有限步構成的一般演算法判斷一個丟番圖方程的可解性?1970年,蘇聯的IO.B.馬季亞謝維奇證明了希爾伯特所期望的演算法不存在。
11. 系數為任意代數數的二次型 H.哈塞(1929)和C.L.西格爾(1936,1951)在這個問題上獲得重要結果。
12. 將阿貝爾域上的克羅克定理推廣到任意的代數有理域上去 這一問題只有一些零星的結果,離徹底解決還相差很遠。
13. 不可能用只有兩個變數的函數解一般的七次方程 七次方程 的根依賴於3個參數a、b、c,即x=x (a,b,c)。這個函數能否用二元函數表示出來?蘇聯數學家阿諾爾德解決了連續函數的情形(1957),維士斯金又把它推廣到了連續可微函數的情形(1964)。但如果要求是解析函數,則問題尚未解決。
14. 證明某類完備函數系的有限性 這和代數不變數問題有關。1958年,日本數學家永田雅宜給出了反例。
15. 舒伯特計數演算的嚴格基礎 一個典型問題是:在三維空間中有四條直線,問有幾條直線能和這四條直線都相交?舒伯特給出了一個直觀解法。希爾伯特要求將問題一般化,並給以嚴格基礎。現在已有了一些可計算的方法,它和代數幾何學不密切聯系。但嚴格的基礎迄今仍未確立。
16. 代數曲線和代數曲線面的拓撲問題 這個問題分為兩部分。前半部分涉及代數曲線含有閉的分枝曲線的最大數目。後半部分要求討論 的極限環的最大個數和相對位置,其中X、Y是x、y的n次多項式.蘇聯的彼得羅夫斯基曾宣稱證明了n=2時極限環的個數不超過3,但這一結論是錯誤的,已由中國數學家舉出反例(1979)。
17. 半正定形式的平方和表示 一個實系數n元多項式對一切數組(x1,x2,...,xn) 都恆大於或等於0,是否都能寫成平方和的形式?1927年阿廷證明這是對的。
18. 用全等多面體構造空間 由德國數學家比勃馬赫(1910)、莢因哈特(1928)作出部分解決。
19. 正則變分問題的解是否一定解析 對這一問題的研究很少。C.H.伯恩斯坦和彼得羅夫斯基等得出了一些結果。
20. 一般邊值問題 這一問題進展十分迅速,已成為一個很大的數學分支。目前還在繼續研究。
21. 具有給定單值群的線性微分方程解的存在性證明 已由希爾伯特本人(1905)和H.羅爾(1957)的工作解決。
22. 由自守函數構成的解析函數的單值化 它涉及艱辛的黎曼曲面論,1907年P.克伯獲重要突破,其他方面尚未解決。
23. 變分法的進一步發展出 這並不是一個明確的數學問題,只是談了對變分法的一般看法。20世紀以來變分法有了很大的發展。
這23問題涉及現代數學大部分重要領域,推動了20世紀數學的發展。
③ 世界七大數學難題是什麼具體內容是什麼
四、「哥德巴赫猜想」的證明。我發現了一條「偶數、素數相互關系定理」,證明了這條定理,就可以證明「哥德巴赫猜想」。
④ 世界5大數學難題
「千僖難題」之一:P(多項式演算法)問題對NP(非多項式演算法)問題
在一個周六的晚上,你參加了一個盛大的晚會。由於感到局促不安,你想知道這一大廳中是否有你已經認識的人。你的主人向你提議說,你一定認識那位正在甜點盤附近角落的女士羅絲。不費一秒鍾,你就能向那裡掃視,並且發現你的主人是正確的。然而,如果沒有這樣的暗示,你就必須環顧整個大廳,一個個地審視每一個人,看是否有你認識的人。生成問題的一個解通常比驗證一個給定的解時間花費要多得多。這是這種一般現象的一個例子。與此類似的是,如果某人告訴你,數13,717,421可以寫成兩個較小的數的乘積,你可能不知道是否應該相信他,但是如果他告訴你它可以因子分解為3607乘上3803,那麼你就可以用一個袖珍計算器容易驗證這是對的。不管我們編寫程序是否靈巧,判定一個答案是可以很快利用內部知識來驗證,還是沒有這樣的提示而需要花費大量時間來求解,被看作邏輯和計算機科學中最突出的問題之一。它是斯蒂文·考克(StephenCook)於1971年陳述的。
「千僖難題」之二: 霍奇(Hodge)猜想
二十世紀的數學家們發現了研究復雜對象的形狀的強有力的辦法。基本想法是問在怎樣的程度上,我們可以把給定對象的形狀通過把維數不斷增加的簡單幾何營造塊粘合在一起來形成。這種技巧是變得如此有用,使得它可以用許多不同的方式來推廣;最終導至一些強有力的工具,使數學家在對他們研究中所遇到的形形色色的對象進行分類時取得巨大的進展。不幸的是,在這一推廣中,程序的幾何出發點變得模糊起來。在某種意義下,必須加上某些沒有任何幾何解釋的部件。霍奇猜想斷言,對於所謂射影代數簇這種特別完美的空間類型來說,稱作霍奇閉鏈的部件實際上是稱作代數閉鏈的幾何部件的(有理線性)組合。
「千僖難題」之三: 龐加萊(Poincare)猜想
如果我們伸縮圍繞一個蘋果表面的橡皮帶,那麼我們可以既不扯斷它,也不讓它離開表面,使它慢慢移動收縮為一個點。另一方面,如果我們想像同樣的橡皮帶以適當的方向被伸縮在一個輪胎面上,那麼不扯斷橡皮帶或者輪胎面,是沒有辦法把它收縮到一點的。我們說,蘋果表面是「單連通的」,而輪胎面不是。大約在一百年以前,龐加萊已經知道,二維球面本質上可由單連通性來刻畫,他提出三維球面(四維空間中與原點有單位距離的點的全體)的對應問題。這個問題立即變得無比困難,從那時起,數學家們就在為此奮斗。
「千僖難題」之四: 黎曼(Riemann)假設
有些數具有不能表示為兩個更小的數的乘積的特殊性質,例如,2,3,5,7,等等。這樣的數稱為素數;它們在純數學及其應用中都起著重要作用。在所有自然數中,這種素數的分布並不遵循任何有規則的模式;然而,德國數學家黎曼(1826~1866)觀察到,素數的頻率緊密相關於一個精心構造的所謂黎曼蔡塔函數z(s$的性態。著名的黎曼假設斷言,方程z(s)=0的所有有意義的解都在一條直線上。這點已經對於開始的1,500,000,000個解驗證過。證明它對於每一個有意義的解都成立將為圍繞素數分布的許多奧秘帶來光明。
「千僖難題」之五: 楊-米爾斯(Yang-Mills)存在性和質量缺口
量子物理的定律是以經典力學的牛頓定律對宏觀世界的方式對基本粒子世界成立的。大約半個世紀以前,楊振寧和米爾斯發現,量子物理揭示了在基本粒子物理與幾何對象的數學之間的令人注目的關系。基於楊-米爾斯方程的預言已經在如下的全世界范圍內的實驗室中所履行的高能實驗中得到證實:布羅克哈文、斯坦福、歐洲粒子物理研究所和築波。盡管如此,他們的既描述重粒子、又在數學上嚴格的方程沒有已知的解。特別是,被大多數物理學家所確認、並且在他們的對於「誇克」的不可見性的解釋中應用的「質量缺口」假設,從來沒有得到一個數學上令人滿意的證實。在這一問題上的進展需要在物理上和數學上兩方面引進根本上的新觀念。
「千僖難題」之六: 納維葉-斯托克斯(Navier-Stokes)方程的存在性與光滑性
起伏的波浪跟隨著我們的正在湖中蜿蜒穿梭的小船,湍急的氣流跟隨著我們的現代噴氣式飛機的飛行。數學家和物理學家深信,無論是微風還是湍流,都可以通過理解納維葉-斯托克斯方程的解,來對它們進行解釋和預言。雖然這些方程是19世紀寫下的,我們對它們的理解仍然極少。挑戰在於對數學理論作出實質性的進展,使我們能解開隱藏在納維葉-斯托克斯方程中的奧秘。
「千僖難題」之七: 貝赫(Birch)和斯維訥通-戴爾(Swinnerton-Dyer)猜想
數學家總是被諸如x^2+y^2=z^2那樣的代數方程的所有整數解的刻畫問題著迷。歐幾里德曾經對這一方程給出完全的解答,但是對於更為復雜的方程,這就變得極為困難。事實上,正如馬蒂雅謝維奇(Yu.V.Matiyasevich)指出,希爾伯特第十問題是不可解的,即,不存在一般的方法來確定這樣的方法是否有一個整數解。當解是一個阿貝爾簇的點時,貝赫和斯維訥通-戴爾猜想認為,有理點的群的大小與一個有關的蔡塔函數z(s)在點s=1附近的性態。特別是,這個有趣的猜想認為,如果z(1)等於0,那麼存在無限多個有理點(解),相反,如果z(1)不等於0,那麼只存在有限多個這樣的點。
⑤ 世界著名的數學難題都是什麼
世界近代三大數學難題之一 哥德巴赫猜想
哥德巴赫是德國一位中學教師,也是一位著名的數學家,生於1690年,1725年當選為俄國彼得堡科學院院士。1742年,哥德巴赫在教學中發現,每個不小於6的偶數都是兩個素數(只能被和它本身整除的數)之和。如6=3+3,12=5+7等等。 1742年6月7日,哥德巴赫寫信將這個問題告訴給義大利大數學家歐拉,並請他幫助作出證明。歐拉在6月30日給他的回信中說,他相信這個猜想是正確的,但他不能證明。敘述如此簡單的問題,連歐拉這樣首屈一指的數學家都不能證明,這個猜想便引起了許多數學家的注意。他們對一個個偶數開始進行驗算,一直算到3.3億,都表明猜想是正確的。但是對於更大的數目,猜想也應是對的,然而不能作出證明。歐拉一直到死也沒有對此作出證明。從此,這道著名的數學難題引起了世界上成千上萬數學家的注意。200年過去了,沒有人證明它。哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的「明珠」。到了20世紀20年代,才有人開始向它靠近。1920年、挪威數學家布爵用一種古老的篩選法證明,得出了一個結論:每一個比大的偶數都可以表示為(99)。這種縮小包圍圈的辦法很管用,科學家們於是從(9十9)開始,逐步減少每個數里所含質數因子的個數,直到最後使每個數里都是一個質數為止,這樣就證明了「哥德巴赫」。 1924年,數學家拉德馬哈爾證明了(7+7);1932年,數學家愛斯爾曼證明了(6+6);1938年,數學家布赫斯塔勃證明了(5十5),1940年,他又證明了(4+4);1956年,數學家維諾格拉多夫證明了(3+3);1958年,我國數學家王元證明了(2十3)。隨後,我國年輕的數學家陳景潤也投入到對哥德巴赫猜想的研究之中,經過10年的刻苦鑽研,終於在前人研究的基礎上取得重大的突破,率先證明了(l十2)。至此,哥德巴赫猜想只剩下最後一步(1+1)了。陳景潤的論文於1973年發表在中國科學院的《科學通報》第17期上,這一成果受到國際數學界的重視,從而使中國的數論研究躍居世界領先地位,陳景潤的有關理論被稱為「陳氏定理」。1996年3月下旬,當陳景潤即將摘下數學王冠上的這顆明珠,「在距離哥德巴赫猜想(1+1)的光輝頂峰只有颶尺之遙時,他卻體力不支倒下去了……」在他身後,將會有更多的人去攀登這座高峰。
⑥ 世界著名100道數學難題!
第一種答案:1+1=0 (你是頭腦比較零活的人) 這種人適合做人事工作,他可以用一個人對付另一個人,自己魚翁得利,比較會整人,仕途會爬的很快,用誰交誰,真正的朋友很少。 第二種答案:1+1=1 (你的學歷可能比較高,明知道等於二,但認為不會出現這么簡單的問題,腦子比較復雜) 這類人的優點是一般具有管理協調能力,具有凝聚力,能讓兩個人擰成一股繩,這種人適合做企業的領導者。 第三種答案:1+1=2 (一般幼兒園小朋友會脫口而出) 這類人具有原則性,不管你是什麼樣的,我都按規律辦事,做事嚴謹,比較適合做學者,科學家,如搞搞"神七"等 第四種答案:1+1=3 (你屬於家庭主婦型), 這樣的人將來一定會是好丈夫、好妻子型,會生活的人,和這樣的人結婚比較幸福。 第五種答案:1+1>2 (你是外向型人,做事有激情) 這樣的人能把每個事物的優點發現出來。有頭腦。能把有限的力量發揮至無限,可以做政治家、軍事家等。 第六種答案:1+1=王 (你屬於不無正業型,也可能你是小學在讀) 這樣的人做科研工作或做技術開發。空間思維能力比較強。 第七種答案:1+1=豐 (你很冷靜,看問題有深度) 這種人做發明家比較合適,想像力豐富,而且邏輯思維能力強。 第八種答案:1+1=田 (你很有思想,喜歡換位思考) 這種人空間想像力豐富.做設計師比較合適. 第九種答案:是我同事女兒回答的 在小丫頭二歲的時候(當時他只認識二十以內的數字)我兩只手每隻手伸出一個食指。靠在一起問她:「寶寶,一個加上一個等於幾個」她大聲說:「11」。 (我暈) 數字如此之大,遠遠超出了我的預料~
⑦ 世界十大數學難題是什麼
難題」之來一:P(多項式自演算法)問題對NP(非多項式演算法)問題
難題」之二: 霍奇(Hodge)猜想
難題」之三: 龐加萊(Poincare)猜想
難題」之四: 黎曼(Riemann)假設
難題」之五: 楊-米爾斯(Yang-Mills)存在性和質量缺口
難題」之六: 納維葉-斯托克斯(Navier-Stokes)方程的存在性與光滑性
難題」之七: 貝赫(Birch)和斯維訥通-戴爾(Swinnerton-Dyer)猜想
難題」之八:幾何尺規作圖問題
難題」之九:哥德巴赫猜想
難題」之十:四色猜想
⑧ 世界上有哪些至今沒有解決的數學難題
1.哥德巴赫猜想:1個偶數可分為2個質數相加《本題未解》(本題被譽為數學王冠上的明珠,陳景潤證明了1個偶數可分為1個質數加上2個質數相乘,俗稱1+2)
2.費馬猜想:任意自然數abc,當n大於2時,a的n次方加b的n次方必不等於c的n次方《本題已解,獎金已送出》(法律專業的費馬寫完這個猜想後說道:我已想到這個題目的美妙解法,無奈這頁空白太少,寫不下,就不寫了…後來的數學家看到這句話後大為光火,奮而求解,終於在350多年後懷爾斯用模橢圓曲線和群論搞定了本題)
3.四色猜想:任何地圖只要4種顏色就可以區分所有國家《本題已解》(1976年美國數學家阿佩爾、哈肯用2台計算機經過50多天100多億次邏輯判斷證明了出來,據說剛開始它作為答案僅僅是因為沒人能證明該證明過程是錯的)
4.植樹問題:種20棵樹,4棵為1行,問最多能種幾行(16世紀排出16行,19世紀排出18行,20世紀末排出20行,那麼你呢…)
5.歐氏第五公設問題:…等價表達…過直線外1點只有1條平行線《本題無解》(歐幾里德通過這個假設推出了歐氏幾何,也叫平面幾何;頑強而又不幸的羅巴切夫斯基通過這個假設的反面推出了非歐幾何,也叫黎曼幾何,廣義相對論的基礎…)
6.黎曼猜想:黎曼zeta函數等0時的所有解在同一直線上《本題未解》(本題非常的神秘,據說它涉及數論函數甚至經濟社會等等方面,博奕論鼻祖納什曾經用n年時間求解此題,不幸瘋掉…)
7.角谷猜想:1個自然數,是偶數就除2,是奇數就乘3加1,最後結果總會是1《本題未解》
8.單色3角形問題:有6個點,每2點用黑色或紅色相連,是否必定存在1個單色3角形?《本題未解》(另一表達:6個人在一起,必有3個人認識或不認識)