導航:首頁 > 小說大全 > 證明世界數學難題的小說

證明世界數學難題的小說

發布時間:2021-09-12 07:16:18

Ⅰ 世界十大數學難題已經解決了哪些

「千僖難題」之一:P(多項式演算法)問題對NP(非多項式演算法)問題 在一個周六的晚上,你參加了一個盛大的晚會。由於感到局促不安,你想知道這一大廳中是否有你已經認識的人。你的主人向你提議說,你一定認識那位正在甜點盤附近角落的女士羅絲。不費一秒鍾,你就能向那裡掃視,並且發現你的主人是正確的。然而,如果沒有這樣的暗示,你就必須環顧整個大廳,一個個地審視每一個人,看是否有你認識的人。生成問題的一個解通常比驗證一個給定的解時間花費要多得多。這是這種一般現象的一個例子。與此類似的是,如果某人告訴你,數13,717,421可以寫成兩個較小的數的乘積,你可能不知道是否應該相信他,但是如果他告訴你它可以因子分解為3607乘上3803,那麼你就可以用一個袖珍計算器容易驗證這是對的。不管我們編寫程序是否靈巧,判定一個答案是可以很快利用內部知識來驗證,還是沒有這樣的提示而需要花費大量時間來求解,被看作邏輯和計算機科學中最突出的問題之一。它是斯蒂文·考克(StephenCook)於1971年陳述的。

「千僖難題」之二: 霍奇(Hodge)猜想 二十世紀的數學家們發現了研究復雜對象的形狀的強有力的辦法。基本想法是問在怎樣的程度上,我們可以把給定對象的形狀通過把維數不斷增加的簡單幾何營造塊粘合在一起來形成。這種技巧是變得如此有用,使得它可以用許多不同的方式來推廣;最終導至一些強有力的工具,使數學家在對他們研究中所遇到的形形色色的對象進行分類時取得巨大的進展。不幸的是,在這一推廣中,程序的幾何出發點變得模糊起來。在某種意義下,必須加上某些沒有任何幾何解釋的部件。霍奇猜想斷言,對於所謂射影代數簇這種特別完美的空間類型來說,稱作霍奇閉鏈的部件實際上是稱作代數閉鏈的幾何部件的(有理線性)組合。

「千僖難題」之三: 龐加萊(Poincare)猜想 如果我們伸縮圍繞一個蘋果表面的橡皮帶,那麼我們可以既不扯斷它,也不讓它離開表面,使它慢慢移動收縮為一個點。另一方面,如果我們想像同樣的橡皮帶以適當的方向被伸縮在一個輪胎面上,那麼不扯斷橡皮帶或者輪胎面,是沒有辦法把它收縮到一點的。我們說,蘋果表面是「單連通的」,而輪胎面不是。大約在一百年以前,龐加萊已經知道,二維球面本質上可由單連通性來刻畫,他提出三維球面(四維空間中與原點有單位距離的點的全體)的對應問題。這個問題立即變得無比困難,從那時起,數學家們就在為此奮斗。

「千僖難題」之四: 黎曼(Riemann)假設 有些數具有不能表示為兩個更小的數的乘積的特殊性質,例如,2,3,5,7,等等。這樣的數稱為素數;它們在純數學及其應用中都起著重要作用。在所有自然數中,這種素數的分布並不遵循任何有規則的模式;然而,德國數學家黎曼(1826~1866)觀察到,素數的頻率緊密相關於一個精心構造的所謂黎曼蔡塔函數z(s$的性態。著名的黎曼假設斷言,方程z(s)=0的所有有意義的解都在一條直線上。這點已經對於開始的1,500,000,000個解驗證過。證明它對於每一個有意義的解都成立將為圍繞素數分布的許多奧秘帶來光明。

「千僖難題」之五: 楊-米爾斯(Yang-Mills)存在性和質量缺口 量子物理的定律是以經典力學的牛頓定律對宏觀世界的方式對基本粒子世界成立的。大約半個世紀以前,楊振寧和米爾斯發現,量子物理揭示了在基本粒子物理與幾何對象的數學之間的令人注目的關系。基於楊-米爾斯方程的預言已經在如下的全世界范圍內的實驗室中所履行的高能實驗中得到證實:布羅克哈文、斯坦福、歐洲粒子物理研究所和築波。盡管如此,他們的既描述重粒子、又在數學上嚴格的方程沒有已知的解。特別是,被大多數物理學家所確認、並且在他們的對於 「誇克」的不可見性的解釋中應用的「質量缺口」假設,從來沒有得到一個數學上令人滿意的證實。在這一問題上的進展需要在物理上和數學上兩方面引進根本上的新觀念。

「千僖難題」之六: 納維葉-斯托克斯(Navier-Stokes)方程的存在性與光滑性 起伏的波浪跟隨著我們的正在湖中蜿蜒穿梭的小船,湍急的氣流跟隨著我們的現代噴氣式飛機的飛行。數學家和物理學家深信,無論是微風還是湍流,都可以通過理解納維葉-斯托克斯方程的解,來對它們進行解釋和預言。雖然這些方程是19世紀寫下的,我們對它們的理解仍然極少。挑戰在於對數學理論作出實質性的進展,使我們能解開隱藏在納維葉-斯托克斯方程中的奧秘。

「千僖難題」之七: 貝赫(Birch)和斯維訥通-戴爾(Swinnerton-Dyer)猜想 數學家總是被諸如x^2+y^2=z^2那樣的代數方程的所有整數解的刻畫問題著迷。歐幾里德曾經對這一方程給出完全的解答,但是對於更為復雜的方程,這就變得極為困難。事實上,正如馬蒂雅謝維奇(Yu.V.Matiyasevich)指出,希爾伯特第十問題是不可解的,即,不存在一般的方法來確定這樣的方法是否有一個整數解。當解是一個阿貝爾簇的點時,貝赫和斯維訥通-戴爾猜想認為,有理點的群的大小與一個有關的蔡塔函數z(s)在點s=1附近的性態。特別是,這個有趣的猜想認為,如果z(1)等於0,那麼存在無限多個有理點(解),相反,如果z(1)不等於0,那麼只存在有限多個這樣的點。

八:幾何尺規作圖問題 這里所說的「幾何尺規作圖問題」是指做圖限制只能用直尺、圓規,而這里的直尺是指沒有刻度只能畫直線的尺。「幾何尺規作圖問題」包括以下四個問題 1.化圓為方-求作一正方形使其面積等於一已知圓; 2.三等分任意角; 3.倍立方-求作一立方體使其體積是一已知立方體的二倍。 4.做正十七邊形。 以上四個問題一直困擾數學家二千多年都不得其解,而實際上這前三大問題都已證明不可能用直尺圓規經有限步驟可解決的。第四個問題是高斯用代數的方法解決的,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。

九:哥德巴赫猜想 公元1742年6月7日哥德巴赫(Goldbach)寫信給當時的大數學家歐拉(Euler),提出了以下的猜想: (a) 任何一個>=6之偶數,都可以表示成兩個奇質數之和。 (b) 任何一個>=9之奇數,都可以表示成三個奇質數之和。 從此,這道著名的數學難題引起了世界上成千上萬數學家的注意。200年過去了,沒有人證明它。哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的「明珠」。

十:四色猜想 1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家著上不同的顏色。」 1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。 1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。四色猜想的計算機證明,轟動了世界。

Ⅱ 一本主角叫季真的小說,無線流,主角在地球上破解了一個世界級的數學難題然後被招為一個大學的教授。

《世界冒險傳奇》作者: 三月的小草

Ⅲ 那個世界著名數學難題:求證1+1(好像最後是陳景潤解出的),題目的具體內容是什麼

那是叫做哥德巴赫猜想的,數學號稱「自然科學的王冠」,而哥德巴赫猜想則號稱是「王冠上的明珠」

以下內容供參閱,其實大多數人對這個內容沒必要知道那麼詳細,大致了解一下就可以了。

哥德巴赫猜想大致可以分為兩個猜想:
1.每個不小於6的偶數都可以表示為兩個奇素數之和;
2.每個不小於9的奇數都可以表示為三個奇素數之和。

Ⅳ 還有哪些世界著名數學難題未解決

1. 連續統假設 1874年,康托猜測在可列集基數和實數基數之間沒有別的基數,這就是著名的連續統假設。1938年,哥德爾證明了連續統假設和世界公認的策梅洛--弗倫克爾集合論公理系統的無矛盾性。1963年,美國數學家科亨證明連續假設和策梅洛--倫克爾集合論公理是彼此獨立的。因此,連續統假設不能在策梅洛--弗倫克爾公理體系內證明其正確性與否。希爾伯特第1問題在這個意義上已獲解決。
2. 算術公理的相容性 歐幾里得幾何的相容性可歸結為算術公理的相容性。希爾伯特曾提出用形式主義計劃的證明論方法加以證明。1931年,哥德爾發表的不完備性定理否定了這種看法。1936年德國數學家根茨在使用超限歸納法的條件下證明了算術公理的相容性。
1988年出版的《中國大網路全書》數學卷指出,數學相容性問題尚未解決。
3. 兩個等底等高四面體的體積相等問題
問題的意思是,存在兩個等邊等高的四面體,它們不可分解為有限個小四面體,使這兩組四面體彼此全等。M.W.德恩1900年即對此問題給出了肯定解答。
4. 兩點間以直線為距離最短線問題 此問題提得過於一般。滿足此性質的幾何學很多,因而需增加某些限制條件。1973年,蘇聯數學家波格列洛夫宣布,在對稱距離情況下,問題獲得解決。
《中國大網路全書》說,在希爾伯特之後,在構造與探討各種特殊度量幾何方面有許多進展,但問題並未解決。
5.一個連續變換群的李氏概念,定義這個群的函數不假定是可微的 這個問題簡稱連續群的解析性,即:是否每一個局部歐氏群都有一定是李群?中間經馮·諾伊曼(1933,對緊群情形)、邦德里雅金(1939,對交換群情形)、謝瓦莢(1941,對可解群情形)的努力,1952年由格利森、蒙哥馬利、齊賓共同解決,得到了完全肯定的結果。
6.物理學的公理化 希爾伯特建議用數學的公理化方法推演出全部物理,首先是概率和力學。1933年,蘇聯數學家柯爾莫哥洛夫實現了將概率論公理化。後來在量子力學、量子場論方面取得了很大成功。但是物理學是否能全盤公理化,很多人表示懷疑。
7.某些數的無理性與超越性 1934年,A.O.蓋爾方德和T.施奈德各自獨立地解決了問題的後半部分,即對於任意代數數α≠0 ,1,和任意代數無理數β證明了αβ 的超越性。
8.素數問題 包括黎曼猜想、哥德巴赫猜想及孿生素數問題等。一般情況下的黎曼猜想仍待解決。哥德巴赫猜想的最佳結果屬於陳景潤(1966),但離最解決尚有距離。目前孿生素數問題的最佳結果也屬於陳景潤。
9.在任意數域中證明最一般的互反律 該問題已由日本數學家高木貞治(1921)和德國數學家E.阿廷(1927)解決。
10. 丟番圖方程的可解性 能求出一個整系數方程的整數根,稱為丟番圖方程可解。希爾伯特問,能否用一種由有限步構成的一般演算法判斷一個丟番圖方程的可解性?1970年,蘇聯的IO.B.馬季亞謝維奇證明了希爾伯特所期望的演算法不存在。
11. 系數為任意代數數的二次型 H.哈塞(1929)和C.L.西格爾(1936,1951)在這個問題上獲得重要結果。
12. 將阿貝爾域上的克羅克定理推廣到任意的代數有理域上去 這一問題只有一些零星的結果,離徹底解決還相差很遠。
13. 不可能用只有兩個變數的函數解一般的七次方程 七次方程 的根依賴於3個參數a、b、c,即x=x (a,b,c)。這個函數能否用二元函數表示出來?蘇聯數學家阿諾爾德解決了連續函數的情形(1957),維士斯金又把它推廣到了連續可微函數的情形(1964)。但如果要求是解析函數,則問題尚未解決。
14. 證明某類完備函數系的有限性 這和代數不變數問題有關。1958年,日本數學家永田雅宜給出了反例。
15. 舒伯特計數演算的嚴格基礎 一個典型問題是:在三維空間中有四條直線,問有幾條直線能和這四條直線都相交?舒伯特給出了一個直觀解法。希爾伯特要求將問題一般化,並給以嚴格基礎。現在已有了一些可計算的方法,它和代數幾何學不密切聯系。但嚴格的基礎迄今仍未確立。
16. 代數曲線和代數曲線面的拓撲問題 這個問題分為兩部分。前半部分涉及代數曲線含有閉的分枝曲線的最大數目。後半部分要求討論 的極限環的最大個數和相對位置,其中X、Y是x、y的n次多項式.蘇聯的彼得羅夫斯基曾宣稱證明了n=2時極限環的個數不超過3,但這一結論是錯誤的,已由中國數學家舉出反例(1979)。
17. 半正定形式的平方和表示 一個實系數n元多項式對一切數組(x1,x2,...,xn) 都恆大於或等於0,是否都能寫成平方和的形式?1927年阿廷證明這是對的。
18. 用全等多面體構造空間 由德國數學家比勃馬赫(1910)、莢因哈特(1928)作出部分解決。
19. 正則變分問題的解是否一定解析 對這一問題的研究很少。C.H.伯恩斯坦和彼得羅夫斯基等得出了一些結果。
20. 一般邊值問題 這一問題進展十分迅速,已成為一個很大的數學分支。目前還在繼續研究。
21. 具有給定單值群的線性微分方程解的存在性證明 已由希爾伯特本人(1905)和H.羅爾(1957)的工作解決。
22. 由自守函數構成的解析函數的單值化 它涉及艱辛的黎曼曲面論,1907年P.克伯獲重要突破,其他方面尚未解決。
23. 變分法的進一步發展出 這並不是一個明確的數學問題,只是談了對變分法的一般看法。20世紀以來變分法有了很大的發展。
這23問題涉及現代數學大部分重要領域,推動了20世紀數學的發展。

Ⅳ 目前世界上還未解決的數學難題又哪些

世界近代三大數學難題之一四色猜想
四色猜想的提出來自英國.1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家著上不同的顏色.」這個結論能不能從數學上加以嚴格證明呢?他和在大學讀書的弟弟格里斯決心試一試.兄弟二人為證明這一問題而使用的稿紙已經堆了一大疊,可是研究工作沒有進展.
1852年10月23日,他的弟弟就這個問題的證明請教他的老師、著名數學家德.摩爾根,摩爾根也沒有能找到解決這個問題的途徑,於是寫信向自己的好友、著名數學家哈密爾頓爵士請教.哈密爾頓接到摩爾根的信後,對四色問題進行論證.但直到1865年哈密爾頓逝世為止,問題也沒有能夠解決.
1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色 猜想成了世界數學界關注的問題.世界上許多一流的數學家都紛紛參加了四色猜想的大會戰 .1878~1880年兩年間,著名的律師兼數學家肯普和泰勒兩人分別提交了證明四色猜想的論文,宣布證明了四色定理,大家都認為四色猜想從此也就解決了.
11年後,即1890年,數學家赫伍德以自己的精確計算指出肯普的證明是錯誤的.不久,泰勒的證明也被人們否定了.後來,越來越多的數學家雖然對此絞盡腦汁,但一無所獲.於是,人們開始認識到,這個貌似容易的題目, 實是一個可與費馬猜想相媲美的難題:先輩數學大師們的努力,為後世的數學家揭示四色猜想之謎鋪平了道路.
進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行.1913年,伯克霍夫在肯普的基礎上引進了一些新技巧,美國數學家富蘭克林於1939年證明了22國以下的地圖都可以用四色著色.1950年,有人從22國推進到35國.1960年,有人又證明了39國以下的地圖可以只用四種顏色著色;隨後又推進到了50國.看來這種推進仍然十分緩慢.電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的進程.1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明.四色猜想的計算機證明,轟動了世界.它不僅解決了一個歷時100多年的難題,而且有可能成為數學史上一系列新思維的起點.不過也有不少數學家並不滿足於計算機取得的成就,他們還在尋找一種簡捷明快的書面證明方法.
--------
世界近代三大數學難題之一 費馬最後定理
被公認執世界報紙牛耳地位地位的紐約時報於1993年6月24日在其一版頭題刊登了一則有
關數學難題得以解決的消息,那則消息的標題是「在陳年數學困局中,終於有人呼叫『
我找到了』」.時報一版的開始文章中還附了一張留著長發、穿著中古世紀歐洲學袍的
男人照片.這個古意盎然的男人,就是法國的數學家費馬(Pierre de Fermat)(費馬
小傳請參考附錄).費馬是十七世紀最卓越的數學家之一,他在數學許多領域中都有極
大的貢獻,因為他的本行是專業的律師,為了表彰他的數學造詣,世人冠以「業余王子
」之美稱,在三百六十多年前的某一天,費馬正在閱讀一本古希臘數學家戴奧芬多斯的
數學書時,突然心血來潮在書頁的空白處,寫下一個看起來很簡單的定理這個定理的內
容是有關一個方程式 x2 + y2 =z2的正整數解的問題,當n=2時就是我們所熟知的畢氏定
理(中國古代又稱勾股弦定理):x2 + y2 =z2,此處z表一直角形之斜邊而x、y為其之
兩股,也就是一個直角三角形之斜邊的平方等於它的兩股的平方和,這個方程式當然有
整數解(其實有很多),例如:x=3、y=4、z=5;x=6、y=8、z=10;x=5、y=12、z=13…
等等.
費馬聲稱當n>2時,就找不到滿足xn +yn = zn的整數解,例如:方程式x3 +y3=z3就無法
找到整數解.
當時費馬並沒有說明原因,他只是留下這個敘述並且也說他已經發現這個定理的證明妙
法,只是書頁的空白處不夠無法寫下.始作俑者的費馬也因此留下了千古的難題,三百
多年來無數的數學家嘗試要去解決這個難題卻都徒勞無功.這個號稱世紀難題的費馬最
後定理也就成了數學界的心頭大患,極欲解之而後快.
十九世紀時法國的法蘭西斯數學院曾經在一八一五年和一八六0年兩度懸賞金質獎章和
三百法郎給任何解決此一難題的人,可惜都沒有人能夠領到獎賞.德國的數學家佛爾夫
斯克爾(P?Wolfskehl)在1908年提供十萬馬克,給能夠證明費馬最後定理是正確的人,
有效期間為100年.其間由於經濟大蕭條的原因,此筆獎額已貶值至七千五百馬克,雖然
如此仍然吸引不少的「數學痴」.
二十世紀電腦發展以後,許多數學家用電腦計算可以證明這個定理當n為很大時是成立的
,1983年電腦專家斯洛文斯基藉助電腦運行5782秒證明當n為286243-1時費馬定理是正確
的(注286243-1為一天文數字,大約為25960位數).
雖然如此,數學家還沒有找到一個普遍性的證明.不過這個三百多年的數學懸案終於解
決了,這個數學難題是由英國的數學家威利斯(Andrew Wiles)所解決.其實威利斯是
利用二十世紀過去三十年來抽象數學發展的結果加以證明.
五0年代日本數學家谷山豐首先提出一個有關橢圓曲現的猜想,後來由另一位數學家志
村五郎加以發揚光大,當時沒有人認為這個猜想與費馬定理有任何關聯.在八0年代德
國數學家佛列將谷山豐的猜想與費馬定理扯在一起,而威利斯所做的正是根據這個關聯
論證出一種形式的谷山豐猜想是正確的,進而推出費馬最後定理也是正確的.這個結論
由威利斯在1993年的6月21日於美國劍橋大學牛頓數學研究所的研討會正式發表,這個報
告馬上震驚整個數學界,就是數學門牆外的社會大眾也寄以無限的關注.不過威利斯的
證明馬上被檢驗出有少許的瑕疵,於是威利斯與他的學生又花了十四個月的時間再加以
修正.1994年9月19日他們終於交出完整無瑕的解答,數學界的夢魘終於結束.1997年6
月,威利斯在德國哥庭根大學領取了佛爾夫斯克爾獎.當年的十萬法克約為兩百萬美金
,不過威利斯領到時,只值五萬美金左右,但威利斯已經名列青史,永垂不朽了.
要證明費馬最後定理是正確的
(即xn + yn = zn 對n33 均無正整數解)
只需證 x4+ y4 = z4 和xp+ yp = zp (P為奇質數),都沒有整數解.
----------------
世界近代三大數學難題之一 哥德巴赫猜想
哥德巴赫是德國一位中學教師,也是一位著名的數學家,生於1690年,1725年當選為俄國彼得堡科學院院士.1742年,哥德巴赫在教學中發現,每個不小於6的偶數都是兩個素數(只能被和它本身整除的數)之和.如6=3+3,12=5+7等等. 1742年6月7日,哥德巴赫寫信將這個問題告訴給義大利大數學家歐拉,並請他幫助作出證明.歐拉在6月30日給他的回信中說,他相信這個猜想是正確的,但他不能證明.敘述如此簡單的問題,連歐拉這樣首屈一指的數學家都不能證明,這個猜想便引起了許多數學家的注意.他們對一個個偶數開始進行驗算,一直算到3.3億,都表明猜想是正確的.但是對於更大的數目,猜想也應是對的,然而不能作出證明.歐拉一直到死也沒有對此作出證明.從此,這道著名的數學難題引起了世界上成千上萬數學家的注意.200年過去了,沒有人證明它.哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的「明珠」.到了20世紀20年代,才有人開始向它靠近.1920年、挪威數學家布爵用一種古老的篩選法證明,得出了一個結論:每一個比大的偶數都可以表示為(99).這種縮小包圍圈的辦法很管用,科學家們於是從(9十9)開始,逐步減少每個數里所含質數因子的個數,直到最後使每個數里都是一個質數為止,這樣就證明了「哥德巴赫」. 1924年,數學家拉德馬哈爾證明了(7+7);1932年,數學家愛斯爾曼證明了(6+6);1938年,數學家布赫斯塔勃證明了(5十5),1940年,他又證明了(4+4);1956年,數學家維諾格拉多夫證明了(3+3);1958年,我國數學家王元證明了(2十3).隨後,我國年輕的數學家陳景潤也投入到對哥德巴赫猜想的研究之中,經過10年的刻苦鑽研,終於在前人研究的基礎上取得重大的突破,率先證明了(l十2).至此,哥德巴赫猜想只剩下最後一步(1+1)了.陳景潤的論文於1973年發表在中國科學院的《科學通報》第17期上,這一成果受到國際數學界的重視,從而使中國的數論研究躍居世界領先地位,陳景潤的有關理論被稱為「陳氏定理」.1996年3月下旬,當陳景潤即將摘下數學王冠上的這顆明珠,「在距離哥德巴赫猜想(1+1)的光輝頂峰只有颶尺之遙時,他卻體力不支倒下去了……」在他身後,將會有更多的人去攀登這座高峰.

Ⅵ 張益唐的證明屬於世界十大數學難題嗎

世界近代三大數學難題1四色猜想2費馬最後定理3哥德巴赫猜想下面附上其內容:1四色猜想內容:四色猜想的提出來自英國.1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家著上不同的顏色.」這個結論能不能從數學上加以嚴格證明呢?他和在大學讀書的弟弟格里斯決心試一試.兄弟二人為證明這一問題而使用的稿紙已經堆了一大疊,可是研究工作沒有進展.1852年10月23日,他的弟弟就這個問題的證明請教他的老師、著名數學家德.摩爾根,摩爾根也沒有能找到解決這個問題的途徑,於是寫信向自己的好友、著名數學家哈密爾頓爵士請教.哈密爾頓接到摩爾根的信後,對四色問題進行論證.但直到1865年哈密爾頓逝世為止,問題也沒有能夠解決.1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題.世界上許多一流的數學家都紛紛參加了四色猜想的大會戰.1878~1880年兩年間,著名的律師兼數學家肯普和泰勒兩人分別提交了證明四色猜想的論文,宣布證明了四色定理,大家都認為四色猜想從此也就解決了.11年後,即1890年,數學家赫伍德以自己的精確計算指出肯普的證明是錯誤的.不久,泰勒的證明也被人們否定了.後來,越來越多的數學家雖然對此絞盡腦汁,但一無所獲.於是,人們開始認識到,這個貌似容易的題目,實是一個可與費馬猜想相媲美的難題:先輩數學大師們的努力,為後世的數學家揭示四色猜想之謎鋪平了道路.進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行.1913年,伯克霍夫在肯普的基礎上引進了一些新技巧,美國數學家富蘭克林於1939年證明了22國以下的地圖都可以用四色著色.1950年,有人從22國推進到35國.1960年,有人又證明了39國以下的地圖可以只用四種顏色著色;隨後又推進到了50國.看來這種推進仍然十分緩慢.電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的進程.1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明.四色猜想的計算機證明,轟動了世界.它不僅解決了一個歷時100多年的難題,而且有可能成為數學史上一系列新思維的起點.不過也有不少數學家並不滿足於計算機取得的成就,他們還在尋找一種簡捷明快的書面證明方法.--------2費馬最後定理內容:被公認執世界報紙牛耳地位地位的紐約時報於1993年6月24日在其一版頭題刊登了一則有關數學難題得以解決的消息,那則消息的標題是「在陳年數學困局中,終於有人呼叫『我找到了』」.時報一版的開始文章中還附了一張留著長發、穿著中古世紀歐洲學袍的男人照片.這個古意盎然的男人,就是法國的數學家費馬(PierredeFermat)(費馬小傳請參考附錄).費馬是十七世紀最卓越的數學家之一,他在數學許多領域中都有極大的貢獻,因為他的本行是專業的律師,為了表彰他的數學造詣,世人冠以「業余王子」之美稱,在三百六十多年前的某一天,費馬正在閱讀一本古希臘數學家戴奧芬多斯的數學書時,突然心血來潮在書頁的空白處,寫下一個看起來很簡單的定理這個定理的內容是有關一個方程式x2+y2=z2的正整數解的問題,當n=2時就是我們所熟知的畢氏定理(中國古代又稱勾股弦定理):x2+y2=z2,此處z表一直角形之斜邊而x、y為其之兩股,也就是一個直角三角形之斜邊的平方等於它的兩股的平方和,這個方程式當然有整數解(其實有很多),例如:x=3、y=4、z=5;x=6、y=8、z=10;x=5、y=12、z=13…等等.費馬聲稱當n>2時,就找不到滿足xn+yn=zn的整數解,例如:方程式x3+y3=z3就無法找到整數解.當時費馬並沒有說明原因,他只是留下這個敘述並且也說他已經發現這個定理的證明妙法,只是書頁的空白處不夠無法寫下.始作俑者的費馬也因此留下了千古的難題,三百多年來無數的數學家嘗試要去解決這個難題卻都徒勞無功.這個號稱世紀難題的費馬最後定理也就成了數學界的心頭大患,極欲解之而後快.十九世紀時法國的法蘭西斯數學院曾經在一八一五年和一八六0年兩度懸賞金質獎章和三百法郎給任何解決此一難題的人,可惜都沒有人能夠領到獎賞.德國的數學家佛爾夫斯克爾(P?Wolfskehl)在1908年提供十萬馬克,給能夠證明費馬最後定理是正確的人,有效期間為100年.其間由於經濟大蕭條的原因,此筆獎額已貶值至七千五百馬克,雖然如此仍然吸引不少的「數學痴」.二十世紀電腦發展以後,許多數學家用電腦計算可以證明這個定理當n為很大時是成立的,1983年電腦專家斯洛文斯基藉助電腦運行5782秒證明當n為286243-1時費馬定理是正確的(注286243-1為一天文數字,大約為25960位數).雖然如此,數學家還沒有找到一個普遍性的證明.不過這個三百多年的數學懸案終於解決了,這個數學難題是由英國的數學家威利斯(AndrewWiles)所解決.其實威利斯是利用二十世紀過去三十年來抽象數學發展的結果加以證明.五0年代日本數學家谷山豐首先提出一個有關橢圓曲現的猜想,後來由另一位數學家志村五郎加以發揚光大,當時沒有人認為這個猜想與費馬定理有任何關聯.在八0年代德國數學家佛列將谷山豐的猜想與費馬定理扯在一起,而威利斯所做的正是根據這個關聯論證出一種形式的谷山豐猜想是正確的,進而推出費馬最後定理也是正確的.這個結論由威利斯在1993年的6月21日於美國劍橋大學牛頓數學研究所的研討會正式發表,這個報告馬上震驚整個數學界,就是數學門牆外的社會大眾也寄以無限的關注.不過威利斯的證明馬上被檢驗出有少許的瑕疵,於是威利斯與他的學生又花了十四個月的時間再加以修正.1994年9月19日他們終於交出完整無瑕的解答,數學界的夢魘終於結束.1997年6月,威利斯在德國哥庭根大學領取了佛爾夫斯克爾獎.當年的十萬法克約為兩百萬美金,不過威利斯領到時,只值五萬美金左右,但威利斯已經名列青史,永垂不朽了.要證明費馬最後定理是正確的(即xn+yn=zn對n33均無正整數解)只需證x4+y4=z4和xp+yp=zp(P為奇質數),都沒有整數解.----------------3哥德巴赫猜想內容:哥德巴赫是德國一位中學教師,也是一位著名的數學家,生於1690年,1725年當選為俄國彼得堡科學院院士.1742年,哥德巴赫在教學中發現,每個不小於6的偶數都是兩個素數(只能被和它本身整除的數)之和.如6=3+3,12=5+7等等.1742年6月7日,哥德巴赫寫信將這個問題告訴給義大利大數學家歐拉,並請他幫助作出證明.歐拉在6月30日給他的回信中說,他相信這個猜想是正確的,但他不能證明.敘述如此簡單的問題,連歐拉這樣首屈一指的數學家都不能證明,這個猜想便引起了許多數學家的注意.他們對一個個偶數開始進行驗算,一直算到3.3億,都表明猜想是正確的.但是對於更大的數目,猜想也應是對的,然而不能作出證明.歐拉一直到死也沒有對此作出證明.從此,這道著名的數學難題引起了世界上成千上萬數學家的注意.200年過去了,沒有人證明它.哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的「明珠」.到了20世紀20年代,才有人開始向它靠近.1920年、挪威數學家布爵用一種古老的篩選法證明,得出了一個結論:每一個比大的偶數都可以表示為(99).這種縮小包圍圈的法很管用,科學家們於是從(9十9)開始,逐步減少每個數里所含質數因子的個數,直到最後使每個數里都是一個質數為止,這樣就證明了「哥德巴赫」.1924年,數學家拉德馬哈爾證明了(7+7);1932年,數學家愛斯爾曼證明了(6+6);1938年,數學家布赫斯塔勃證明了(5十5),1940年,他又證明了(4+4);1956年,數學家維諾格拉多夫證明了(3+3);1958年,我國數學家王元證明了(2十3).隨後,我國年輕的數學家陳景潤也投入到對哥德巴赫猜想的研究之中,經過10年的刻苦鑽研,終於在前人研究的基礎上取得重大的突破,率先證明了(l十2).至此,哥德巴赫猜想只剩下最後一步(1+1)了.陳景潤的論文於1973年發表在中國科學院的《科學通報》第17期上,這一成果受到國際數學界的重視,從而使中國的數論研究躍居世界領先地位,陳景潤的有關理論被稱為「陳氏定理」.1996年3月下旬,當陳景潤即將摘下數學王冠上的這顆明珠,「在距離哥德巴赫猜想(1+1)的光輝頂峰只有颶尺之遙時,他卻體力不支倒下去了……」在他身後,將會有的人去攀登這座高峰.2除此之外還有知名的千禧年大獎難題:分別是「NP完全問題」、「霍奇猜想」、「龐加萊猜想」、「黎曼假設」、「楊·米爾斯理論」、「納衛爾-斯托可方程」、「BSD猜想」。也是數學世界性的難題

Ⅶ 世界頂級未解數學難題都有哪些

1、霍奇猜想(Hodge conjecture):

二十世紀的數學家們發現了研究復雜對象的形狀的強有力的辦法。基本想法是問在怎樣的程度上,我們可以把給定對象的形狀通過把維數不斷增加的簡單幾何營造塊粘合在一起來形成。

這種技巧是變得如此有用,使得它可以用許多不同的方式來推廣;最終導致一些強有力的工具,使數學家在對他們研究中所遇到的形形色色的對象進行分類時取得巨大的進展。

不幸的是,在這一推廣中,程序的幾何出發點變得模糊起來。在某種意義下,必須加上某些沒有任何幾何解釋的部件。

霍奇猜想斷言,對於所謂射影代數簇這種特別完美的空間類型來說,稱作霍奇閉鏈的部件實際上是稱作代數閉鏈的幾何部件的(有理線性)組合。

2、龐加萊猜想(Poincaré conjecture):

如果我們伸縮圍繞一個蘋果表面的橡皮帶,那麼我們可以既不扯斷它,也不讓它離開表面,使它慢慢移動收縮為一個點。

另一方面,如果我們想像同樣的橡皮帶以適當的方向被伸縮在一個輪胎面上,那麼不扯斷橡皮帶或者輪胎面,是沒有辦法把它收縮到一點的。

我們說,蘋果表面是「單連通的」,而輪胎面不是。大約在一百年以前,法國數學家龐加萊已經知道,二維球面本質上可由單連通性來刻畫,他提出三維球面的對應問題。這個問題立即變得無比困難,從那時起,數學家們就在為此奮斗。

3、黎曼假設:

有些數具有不能表示為兩個更小的數的乘積的特殊性質,例如,2、3、5、7……等等。這樣的數稱為素數;它們在純粹數學及應用數學中都起著重要作用。

在所有自然數中,素數分布似乎並不遵循任何有規則的模式;然而,德國數學家黎曼(1826~1866)觀察到,素數的頻率緊密相關於所謂的黎曼ζ函數。

黎曼假設斷言,方程ζ(s)=0的非平凡零點的實部都是1/2,即位於直線1/2 + ti(「臨界線」,critical line)上。這點已經對於開首的1,500,000,000個解驗證過。證明它對於每一個有意義的解都成立,將為圍繞素數分布的許多奧秘帶來光明。

4、楊-米爾斯(Yang-Mills)存在性和質量缺口:

量子物理的定律是以經典力學的牛頓定律對宏觀世界的方式對基本粒子世界成立的。大約半個世紀以前,楊振寧和羅伯特·米爾斯發現,量子物理揭示了在基本粒子物理與幾何對象的數學之間的令人注目的關系。

基於楊-米爾斯方程的預言已經在如下的全世界范圍內的實驗室中所履行的高能實驗中得到證實:布羅克哈文、斯坦福、歐洲粒子物理研究所和築波。

盡管如此,他們的既描述重粒子、又在數學上嚴格的方程,並沒有已知的解。特別是,被大多數物理學家所確認、並且在他們的對於「誇克」的不可見性的解釋中應用的「質量缺口」假設,從來沒有得到一個數學上令人滿意的證實。

(7)證明世界數學難題的小說擴展閱讀:

周氏猜測:

當2^(2^n)<p<2^(2^(n+1))時,Mp有2^(n+1)-1個是素數。

周海中還據此作出推論:當p<2^(2^(n+1))時,Mp有2^(n+2)-n-2個是素數。

關於梅森素數的分布研究,英國數學家香克斯、德國數學家伯利哈特、印度數學家拉曼紐楊和美國數學家吉里斯等曾分別提出過猜測,但他們的猜測有一個共同點,就是都以近似表達式提出;而它們與實際情況的接近程度均難如人意。

唯有周氏猜測是以精確表達式提出,而且頗具數學美。這一猜測至今未被證明或反證,已成了著名的數學難題。

美籍挪威數論大師、菲爾茨獎和沃爾夫獎得主阿特勒·塞爾伯格認為:周氏猜測具有創新性,開創了富於啟發性的新方法;其創新性還表現在揭示新的規律上。

參考資料:

網路--數學難題

Ⅷ 世界三大數學難題(四色猜想)的證明

是用計算機證明出來的

Ⅸ 百科裡說黎曼假設是世界七大數學難題之一,至今未被證明。但電影<美麗心靈>後半部分里出現了「納什解決

他解決的是黎曼流形在歐幾里德空間中的等距嵌入問題,不是黎曼猜想。

閱讀全文

與證明世界數學難題的小說相關的資料

熱點內容
成人亂理小說全集 瀏覽:130
小說人物糖包 瀏覽:516
小說女主叫若水的古代小說 瀏覽:900
玄幻小說的楔子怎麼寫 瀏覽:32
腹黑總裁愛校花小說 瀏覽:567
熱血的都市異能小說0 瀏覽:901
女總裁的萌夫小說合集下載 瀏覽:758
小說青春無限閱讀全文 瀏覽:503
農村亂家庭倫短篇小說 瀏覽:52
言情宅斗小說鬧書荒 瀏覽:157
朱輕言情小說網 瀏覽:669
高幹聯姻婚後相處現代小說 瀏覽:85
小說大綱內容簡介怎麼寫 瀏覽:829
電視劇版全世界最好的你小說 瀏覽:896
女主現代古武小說 瀏覽:433
方婷宜同人小說系統 瀏覽:613
女主長的超美的小說全集 瀏覽:250
女主溫柔平凡的小說 瀏覽:206
學生女主早上起床就和人做愛的小說 瀏覽:479
重生小說女主名字向晚 瀏覽:207